The “new” GHC API

And an example client: Scion

Thomas Schilling

nominolo@googlemail.com

An example
import GHC
import GHC.Paths (libdir) -- package ghc-paths

main =

defaultErrorHandler $

defaultCleanupHandler $

runGhc (Just libdir) $ do
dflags <- getSessionDynFlags
setSessionDynFlags (dflags{ hscTarget = HscNothing })
t <- guessTarget “A.hs” Nothing
setTargets [t]
result <- load LoadAllTargets
if (succeeded result) then putStrLn “Yay!”

else putStrLn “D’oh!”

GHC needs to know the path where GHC is installed so it can find the package database and
other things. The most portable way to do this at the moment is to use the ghc-paths library
which uses some installation-time preprocessor magic to figure this out. | don’t know how
well that works for deployment, though.

The main function sets up some error handlers and starts a GHC session. GHC API functions
actually work for any monad that provides sufficient features (more on this in a later), but a
default monad “Ghc” and a default monad transformer “GhcT” is provided. “runGhc”
performs most of the necessary initialisation steps. One remaining step is to set the
DynFlags, if you don’t modify the flags Ghc will die on you (I might change that in the future).

GHC has both static and dynamic flags. The former cannot be changed during a session, in
fact, they cannot be changed during the whole run of a program using the GHC API as they
are implemented as global variables (yes, really). In the long term we’d like to get rid of
them, but this may require quite substantial refactorings. The DynFlags on the other hand
can be set both on the command line and, more importantly, in an OPTIONS_GHC pragma of
a source file. In the example above we set the compilation target to “nothing” which means
that no code is generated, only parsing and type checking.

The next step is to set a target. A targetis a module that we are interested in. Before we can
type check a target we have to type check and load all its dependencies though. The
example code is essentially what GHCi does when you type :load A.hs. “guessTarget” tries to
automatically detect whether the string refers to a file or a module name and constructs the
corresponding result of type Target. You could do it manually, but guessTarget is mostly fine.

An example

import GHC

import GHC.Paths (libdir) -- package ghc-paths
(ExceptionMonad m, MonadIO m)

=> DynFlags ->m a ->m a

main =
defaultErrorHandler $% Maybe FilePath -> Ghc a -> IO a
defaultCleanupHandler $ GhcMonad m => m DynFlags
runGhc (Just libdir) $ do pTpTE—
dflags <- getSessionDynFlags DynFlags -> m [PackageId]

setSessionDynFlags (dflags{ hscTarget = HscNothing })
t <- guessTarget “A.hs” Nothing

setTargets [t] GhcMonad m => String -> Maybe Phase -> m Target
result <- load LoadAllTargets
if (succeeded result) then putStrLn “Yay!”

else putStrLn “D’oh!”

GhcMonad m => LoadHowMuch -> m SuccessFlag

Finally, the call to load loads our target and all its dependencies and returns a flag
whether it was successful. This is example is actually missing some error handling
since load might fail and throw an exception in some cases. If load fails to compile a
module it will print all warnings and errors to stdout by default, but you can override
this behaviour by installing proper hooks.

The Ghc Monad (Class)

class (Functor m, MonadIO m, WarnLogMonad m, ExceptionMonad m)
=> GhcMonad m where
getSession :: m HscEnv
setSession :: HscEnv -> m ()

class Monad m => WarnLogMonad m where

setWarnings :: WarningMessages -> m ()
getWarnings :: m WarningMessages
class Monad m => ExceptionMonad m where
gcatch :: Exception e =>ma -> (e ->ma) ->m a
ghlock :ma->ma -- async exception stuff
gunblock ::ma ->ma
newtype Ghc a = Ghc { unGhc :: Session -> IO a }
data Session = Session !(IORef HscEnv) !(IORef WarningMessages)

GHC API functions typically are of the form “GhcMonad m => argl -> arg2 ->m
result”. This way it is easy to use them in custom monads without having to wrap
them in “liftGhc” or similar things. A “GhcMonad” needs to be able to perform IO
actions, accumulate warnings and handle exceptions. For this reason we have added
the “ExceptionMonad” class. This function should really be moved into a standard
library, but for now it is GHC-specific.

“WarnLogMonad” is a simple writer monad with a clearing operation. For simplicity
(and flexibility) it uses a state interface as primitives. The default monad “Ghc” uses is
implemented as reader monad with mutable refs in the hope that this eliminates
some opportunities for space leaks. It also makes it easier to implement “gcatch” and
embedding the monad into 10 for use in 10 callbacks (needed by GHCi for editline
callbacks, see “HscTypes.reflectGhc” and “HscTypes.reifyGhc” in the GHC API
haddock docs.)

DIY Compilation
) Arguments: (1) excluded modules (2) allow duplicate roots?

depanal :: GhcMonad m => [ModuleName] -> Bool -> m ModuleGraph
parseModule :: GhcMonad m => ModSummary -> m ParsedModule
typecheckModule :: GhcMonad m => ParsedModule -> m TypecheckedModule
desugarModule :: GhcMonad m => TypecheckedModule -> m DesugaredModule
loadModule :: (TypecheckedMod mod, GhcMonad m) => mod -> m mod

class ParsedMod m where
modSummary tiom -> ModSummary
parsedSource :: m -> ParsedSource

class ParsedMod m => TypecheckedMod m where
renamedSource 1 m -> Maybe RenamedSource

typecheckedSource m -> TypecheckedSource
moduleInfo :: m -> ModuleInfo
tm_internals m -> (TcGblEnv, ModDetails) -- ignore me

class TypecheckedMod m => DesugaredMod m where
coreModule :: m -> ModGuts

While load is very smart in loading all dependencies (it even skips things that don’t
need recompilation), sometimes we need to touch all modules anyways (e.g.,
Haddock.) In those cases it is still quite easy to perform the necessary steps
“manually”.

“depanal” performs a dependency analysis with the current targets as root and
returns a module graph as a result. A module graph consists of a “ModSummary”
which is the module name, its imports, and some extra information like the
timestamp of the last modification the cached preprocessed sources and some
further things. The remaining functions form a simple pipeline, each adding to the
information of the previous phase (look out for space leaks!).

The typeclasses shown are faking extensible records, i.e., a desugared module has all
the information of a typechecked module and some more and a typechecked module
has all the information of a parsed module and some more. These classes should
generally be treated as private since it’s quite hard to construct, say, a valid
“TypecheckedSource” datatype.

“loadModule” makes sure that we can load dependent modules by generating an
interface file (in memory or on disk or both).

DIY Compilation (cont’d)

do Arguments: (1) drop .hi-boot files? (2) modules

(3) optional root module
Returns: Strongly-connected components

mg <- depanal [] False !
let mods = flattenSCCs (topSortModuleGraph False ms Nothing)
forM mods $ \modsum -> do
tcm <- loadModule =<< typecheckModule =<< parseModule modsum
printWarnings -- also clears accumulated warnings
-- ... extract info some info from tcm
return (Just 42)
“geatch® \(e :: SourceError) -»> do
printExceptionAndWarnings e clear warnings, too
return Nothing

If we want to load all modules we must traverse them in dependency order. The
result of “depanal” is not guaranteed to be in dependency order.
“topSortModuleGraph” calculates the strongly connected components (SCC) which
we can then flatten to get a dependency ordered module list. Note how the first
argument to “topSortModuleGraph” is “False” which means, that we keep “hs-boot”
files, which are used to break recursive dependencies in GHC. If you don’t do this,
then the result might be cyclic and compilation will fail. If, however, you only want to
draw a module dependency graph then passing “True” is probably what you want.

Each of the “*Module” functions may encounter an error. In order to allow the
simple pipelining structure, we throw these as an exception. If GHC encounters, say,
a type error it doesn’t give up immediately, though, so a “SourceError” may contain
multiple error messages (or none if we failed due to -Werror). Warnings are
accumulated for all the phases. In fact, even “loadModule” may generate warnings
(orphan warnings). These are logged using the mechanisms of the GhcMonad, and
can be extracted using “getWarnings” and cleared using “clearWarnigs”.
“printWarnings” does both for us and prints them to stdout. Similarly
“printExceptionAndWarnigs”. Remember, though, if you use custom error handlers
you need to clear warnings yourself.

Error Handling

* Most functions operating on source files throw a “SourceError” if
something goes wrong.

data SourceError = SourceError ErrorMessages

* GhcException (red = needs rethinking, arguably a SourceError)

data GhcException
PhaseFailed String ExitCode an external phase (eg. cpp) failed

Interrupted

UsageError String

Panic String -- the “imp

|
|
| CmdLineError String
|)ssible' happened

| InstallationError String -- an installation problem

| ProgramError String -- error in the user's code, probably
* There’s also an “ApiError” exception, which indicates misuse of the

API, however, it is rarely used ATM and may get merged into

A “SourceError” represents an “error in the source code”, i.e., nothing external. GHC
also has a custom exception type which partly overlaps with the definition of
SourceError, so these things may change. Another change, I'd like to make is to have
a datatype with each type of error message as a different constructor. That way it’s
easier for tools to recognise the error and suggest default fixes (instead of grepping
through the message text).

The GHC API still has a couple of non-trivial pre-conditions for certain functions.
Many will simply lead to a panic, a very small number has already been replaced by a
“ApiError”, more may follow. (OTOH, an APl error is rarely recoverable.)

data GhcMode
= CompManager
| OneShot
| MkDepend

data HscTarget
= HscC

| HscAsm

| Hsclava

\

\

HscInterpreted
HscNothing

data GhclLink
= NoLink
| LinkBinary
| LinkInMemory
| LinkDynLib

Compilation Modes and Targets

--make, GHCi, etc.
ghc -c Foo.hs
ghc -M

-fvia-C

native code generator
dead

generate bytecode

don’t generate anything

Don't link at all

Link object code into a binary
Use the in-memory dynamic linker
Link objects into a dynamic 1lib

-- (DLL on Windows, DSO on ELF platforms)
(underline = default, C/Asm depends on how GHC was compiled)

These variables (set in the DynFlags) control what output and kinds of code GHC
produces. They should be fairly self-explanatory. Note that “LinkiInMemory” works
for all targets. Also note that not all code can be compiled to interpreted form, in
particular unboxed tuples are not supported.

Extracting Information

islLoaded :: GhcMonad m => ModuleName -> m Bool

getBindings :: GhcMonad m => m [TyThing] -- from GHCi session
data TyThing = AnId Id

| ApataCon DataCon

| ATyCon TyCon

| Aclass Class

getModuleInfo :: GhcMonad m => Module -> m (Maybe ModulelInfo)
modInfoTyThings :: ModuleInfo -> [TyThing]
modInfoTopLevelScope :: ModuleInfo -> Maybe [Name]
modInfoExports :: ModuleInfo -> [Name]

modInfoInstances :: ModuleInfo -»> [Instance]

modInfoModBreaks :: ModuleInfo -> ModBreaks

lookupGlobalName :: GhcMonad m => Name -> m (Maybe TyThing)
lookupName :: GhcMonad m => Name -> m (Maybe TyThing)

* ghc-syb package provides SYB instances for many GHC types

There are already lots of functions to query GHC'’s internal state and compiled
modules. For a full list see the Haddock documentation. Some things are still missing
or could use a better interface, but it’s quite hard to figure out how things can be
improved without knowing the client. So, if you have an idea for a client and feel like
an important feature is missing — talk to us!

Issues

* The GHC APl is not thread-safe(!)
* Inconsistenterror types

* |t's hard to hide certain internals. Clients must make sure not to break
certain invariants.

* Documentation (We have Haddocks, though still very incomplete)

* Binary compatibility problems bite us hard: A GHC API client can only read
.hifiles that were written by the same (minor) version of GHC (or by the
API client itself.)

* Flat module hierarchy. This will change after 6.10.2 has been released.

Sadly, the GHC APl is not thread safe. It uses IORefs all over the place — e.g., for global
variables and some caches. Interface files are also loaded lazily so there’s a bit of
unsafeLaunchMissile stuff.

GHC's AST types are quite huge and come with some invariants which make them
quite difficult to use. It may be possible to translate to, say, haskell-src-exts ASTs but
we should not expect such thing to go both ways. In addition, it might get changed
with every version of GHC. We don’t really know what a good solution would be.

Documentation status is improving slowly. Of course, help is always welcome. Once
6.10.2 has been released GHC will get a more standard hierarchical module structure
which should also help with accessibility. (We wait until 6.10.2 because otherwise
backporting could become a nightmare.)

10

SC | on (rhymes with “lion”)

* Scionisan IDE library
* Sofar:
— open a Cabal library/executable
- loadit
— re-typecheck current module
* Inprogress
— lookup thing at point *
— type of expr/id/pattern at point *
* Planned
— Typecheck only parts of a module
— Hoogle integration
— GHCiintegration (e.g. run selection

Inspect.hs 13% L63 Git:m

— Goto definition (cross package) (Screenshots from the Emacs frontend)

— who-calls / who-uses (xrefs)

— (type-directed / fuzzy) completion http://github.com/nominolo/scion
— Type of hole http://code.google.com/p/scion-lib

— expand cases
= * only if whole module typechecks

There will never be a single definite Haskell IDE — many newcomers know and like
Eclipse or Visual Studio, real (or wannabe) hackers use Emacs or Vim, or perhaps

someday Yi, furthermore educators may want to provide special learning frameworks.

The goal is to put functionality that IDEs (or other tools working on Haskell code) can
use into one place. The frontend should then merely wrap scion functionality.
Existing code is integrated where possible (Visual Haskell, Shim).

Scion currently uses Cabal to set flags, but Cabal doesn’t have a good API, either.
Scion should not require a custom project file format, but provide an API to fill in
settings from the frontend’s project description.

The Emacs frontend is currently part of the repo because | use it. It communicates
via a local socket with a server written in Haskell which only provides a small wrapper
around the actual Scion API. (Most of the client side code has been adopted from
SLIME.) Other non-Haskell clients could use the same strategy.

| also plan to add a little bit of concurrency despite GHC API’s single-threadedness.
Operations like querying the package database or supported language flags can be
done in parallel to compilation even though we cannot compile or typecheck in
parallel.

11

